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Abstract

People are exposed to information from different sources whether or not such exposure is

desired. Due to a limited ability to process information, only parts of the messages may be

absorbed, and other parts may be ignored. Repeated stimuli lead to lower responses due to

the learning process and the habituation effect. While this effect has been intensively stud-

ied, mainly in relation to visual stimulus, it is also incorporated in information spreading pro-

cesses. Information spreading models often assume the possibility of repeated contact, but

no habituation effect, which lowers the level of responsiveness of nodes in the network, has

been implemented. Here, we study the impact of the habituation effect on information

spreading with a susceptible–infected (SI) model, which is often the basis for other models.

We assume that a decrease in habituation has an impact on propagation processes. Analy-

sis of the results shows that the course of these propagation processes behave differently,

significantly worsening their results. These processes are very sensitive, even to small

changes in the level of habituation.

1. Introduction

Electronic media are used extensively for marketing operations, often leading to marketing

content overload. Users experience advertising clutter with many commercial messages deliv-

ered within portals and social media [1]. The perceived intrusiveness of marketing content

may negatively impact brand awareness, and overall performance [2]. It often leads to advertis-

ing avoidance within social media and the usage of ad blocking software [3]. From the perspec-

tive of perception and a limited ability to process information, content is filtered, and only a

limited number of messages is absorbed [4]. In the area of visual advertising, banner blindness

is resulting in ignored marketing content within visual spaces [5, 6].

The habituation effect is one of the reasons for reduced response [7]. It was initially ana-

lyzed from the perspective of biological systems and can be understood as a form of basic

learning [8]. While the habituation effect was identified and studied in the 1960s [9], new goals

and directions have been identified, including new ways of separating habituation from sen-

sory adaptation or fatigue [10].
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Apart from empirical experiments, the need for new predictive models is emphasized [11].

Even at an early stage of research, simulation models were used for modeling synaptic mecha-

nisms [12]. Differential equations from first applications [13] were extended to model inter-

stimulus intervals [14] or the impact of long-term memory [15].

Apart from biological systems, habituation was taken into account in artificial systems and

robots [16]. The purpose of the model is to represent visual attention for computer programs

or robots [17]. Novelty detection algorithms were also inspired by habituation studies [18].

Applications of habituation mechanisms to machine-learning processes were implemented to

make the learning process closer to biological systems, because, even in such case, a decrease

in the responsiveness of the learning process has been observed over time [19]. Models of

habituation were also used for multi-armed bandits algorithms for marketing online content

delivery optimization [20]. Recent efforts were related to predictability [21], visual stimulus

[22], and modeling emotional habituation [23].

Besides visual communication and display advertising, repeated stimuli are also typical for

word-of-mouth actions within real or digital social networks. The social network structure

allows for the flow of various kinds of content. This can be any information, idea, visual con-

tent, or viral movie. Social network members perceive repeated exposures, and its impact on

information spreading was analyzed [24]. Repetitions can deliver a cumulative impact on con-

sumer behavior and increase the probability of purchase [25]. This results in the extension of

the influence maximization problem towards repeated contacts. The cumulative influence was

also analyzed for threshold models, and pieces of information received by users in each step

are accumulated before the final decision takes place [26]. Multiple received signals were used

as an extension of single activation models to reach threshold zones [27]. Analogies can be

found in epidemiology research, where transmission probability is related to a number of con-

tacts with an infected person [28]. Smieszek et al. focused on contact repetition and proposed

an extension of the SIR model [29]. Earlier, the deterministic epidemic model taking into

account repeated contacts was proposed, and the repetition impact of spreading effectivity was

analyzed [30]. Repetitions of periods of partnership contact are also typical for sexually trans-

mitted diseases [31].

While various models are used to represent behaviors based on repeated messages, the drop

in response after repeated messages was not taken into account. Most models assume that

repeated massages will not decrease the effectiveness of the spreading process but rather

increase. While a cumulative impact can increase performance, from another perspective,

repeated communication can be perceived as unwanted, and the probability of purchases can

generally decrease [32]. Incentivized viral campaigns generate a high number of repeated con-

tact, and the performance represented by conversion rate can decrease [33]. Intensive informa-

tional campaigns focused on changes in social behavior, for example, changes in behavior

during a pandemic, are performed [34]. They do not always deliver the expected results, and

habituation can be one of the reasons for a decreased response.

In terms of spreading within networks, the habituation effect was modeled earlier under an

Independent Cascades Model [35]. The IC model proposed in [36] assumes that repeated con-

tacts are observed only when communication with the same content comes from other differ-

ent users. A single user has only one chance to activate other user, so repetition between two

users never exists.

In the current study, we focused on a situation that is more common for information

spreading: when a repeated message can flow between the same nodes. We adopted a suscepti-

ble–infected (SI) epidemic model, which has been discussed and used for information spread

in many studies [37, 38]. In the basic SI model, a failed attempt to transmit information or a

virus does not affect the probability of success of subsequent attempts. The difference in our

PLOS ONE Modeling the impact of the habituation effect on information spreading processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0280266 April 12, 2023 2 / 20

https://doi.org/10.1371/journal.pone.0280266


model is that, as a result of the habituation process, each failed attempt lowers the chances of

infection in the next step. It assumes repetitions between the same users, which represents a

situation when several attempts to deliver a message are taken between two network members.

The habituation effect was integrated within the model, and experiments were performed for

different parameters of response decrease.

2. The habituation effect and its integration within the susceptible–

infected (SI) model

Habituation is a cognitive process that involves the fading of a response to a stimulus [11]. In

practice, it can be assumed that, as a species, we are generally able to adapt to changes that

occur. We react to a variety of different external stimuli with the senses. As time goes by, when

the stimulus no longer causes the same reaction or simply does not change, the reaction fades.

At the beginning of 2020, we faced two major events that may in some way illustrate the fading

of reactions and the “taming” of society to the changes that took place. The first is the COVID-

19 epidemic, and the second is Russia’s attack on Ukraine. It was possible to observe how the

amount of information, or, unfortunately, disinformation, on a given topic can increase. East-

ern European countries experienced several disinformation attacks when the war began,

aimed at weakening the mobilization of the population in providing aid to refugees. This was

partially successful because of the strong emotional appeal of this content, fueled by the natural

fear of war. Border countries were particularly vulnerable to attacks because of its assistance to

refugees. They have experienced two major panic attacks in society, fueled by so-called “trolls”

on social media. This is an example of how habituation can work to the advantage of the recip-

ient, weakening their reaction to acutely harmful message. Fear is never a good advisor, and it

most easily intensifies the user’s reaction. At the beginning of the war, information about sud-

den increases in fuel prices caused panic and queues. The result was a threat of fuel shortages

for special forces vehicles. The second situation concerned a shortage of sugar. The panic

caused people to buy up supplies, and the stores ran out of sugar for two weeks. Both situations

threatened a direct decline in the quality of life, which resulted in a psychological attack on a

large part of the population.

In the middle of these events the idea was born about conducting a study on how habitua-

tion impacts the way various content spreads through social networks. In this study we make

no distinction between the spread of information or contagion; nor do we specify the exact

type of information in question, as the entirety of humanity’s developement has occured

throught the mechanisms of information spread. It is irrelevant if what is being spread is reli-

gion, disease, fashion, lifestyle, ideology, or the elementary skills like the ability to write or

basic math. It could even be an emotion, like outrage or fear; in fact we’ve seen this year how

fear of war spreads, and despite the importance and gravity of this subject we may already see

a decline of interest and strength of response to the ongoing conflict. That’s habituation, and

we are interested exclusively in how this process affects the spread of our test outbreak.

This section presents the idea of integration habituation with the spreading model. Fig 1

shows how responsiveness level curve is shaped by the effect of habituation. Imagine having a

friend, who is trying to convince you to their point of view at almost every opportunity. During

first two meetings an attempt to spread this information occurs, with the subject, namely us,

showing no positive response. On the contrary, our level of responsiveness decreases, while

our irritation rises. During third meeting there is no spread attempt; it might be a simple con-

versation about the weather, but whatever the subject, it gives us a welcome break from the

annoying content and our level of responsiveness to the subject rebounds. During the next two

meetings, however, further attempts occur. This results in our responsiveness falling to almost
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zero. The interpretation is that it’s not simply that we don’t want to listen, it’s that at this point

we don’t want to even meet our troublesome friend.

The SI model generates a very large number of contacts, each one resulting in an attempt to

transmit information. This results in a faster coverage process compared to SIR or SIRS mod-

els, where nodes can undergo “healing.” We found that it will be best suited to test the effec-

tiveness of multiple contacts. This situation can generate a large number of unsuccessful

attempts, which cause a decrease in responsiveness with each successive attempt.

In our study, we assume that each node wants to provide the same information. What kind

of information it is is not important, because any content under certain conditions can be tire-

some. For this reason, in our model, the studied epidemics have fixed parameters, while the

edge weights are randomized for each individual contact in the network. As in real life, we

have various moods or coincidences from different people under certain conditions, and mes-

sages may be more digestible.

The SI model allows infected nodes to contact their neighbors as many times as possible.

They are not able to recover from infection like in other, previously mentioned models. For

this reason, the situation, as shown on Day 3 in Fig 1, will not have a chance to occur. In the SI

model, if an infected node appears in the neighborhood of a node, it will attempt to infect the

susceptible node in each successive simulation step until it succeeds. In our assumption, each

failed attempt will affect the probability of propagation in each subsequent attempt. Of course,

a node can become infected on the first attempt, in which case its level of responsiveness will

not change. A song can be “catchy” upon hearing it for the first time, and some may attest to

the experience of “love at first sight.” Arguably, an interesting assumption would be that the

level of responsiveness at which we adopt a given piece of content influences the “fervor” with

which we will propagate it further. However, this could already be a different kind of respon-

siveness, since every stimulus we interact with affects our resistance to a variety of factors.

At the beginning of each simulation, the infection process begins with a group of nodes. In

the first step, each infected node gets one chance each to infect susceptible neighbors. Nodes

having several active neighbors that will be contacted several times in one turn. A node

infected in a given queue is added to the pool of seeders and will be able to infect a neighbor in

the next step. Nodes that are not infected after contact have their responsiveness level lowered,

which decreases the chance of success in the next attempt. This process will continue until the

network is fully covered. In our study, we used a coverage threshold of 80%. We chose this

limit because of the significant decrease in process dynamics and the time required for 100%

coverage.

Fig 2 shows how the dynamics of network coverage evolves. Graph 2.A shows the average

of all runs without the effect of habituation. These processes took 40 simulation steps to reach

the threshold, with an average of about 20 attempts per successful infection. Chart 2.B, on the

other hand, shows the averaged runs for the same simulations, already showing a decrease in

Fig 1. Example illustrating the impact of repeated ineffective/unwanted contacts on node responsiveness.

https://doi.org/10.1371/journal.pone.0280266.g001
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responsiveness. It took 100 contacts to infect one node, making the time increase by more

than three times. Plot 2.C and 2.D show the results for the most and least favorable habituation

parameters, respectively. Overlaid on all graphs having the effect of habituation are curves of

decreasing responsiveness for all nodes, infected nodes, and uninfected nodes, which includes

those not yet contacted.

In the next section, we describe in more detail the assumptions of the experiment, the

parameters used, and the computational method.

Fig 2. Example illustrating the impact of a drop in responsiveness on process performance.

https://doi.org/10.1371/journal.pone.0280266.g002
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3. Experiment setup and the mathematical method

Agent-based simulations were performed on four real networks. All were from public reposi-

tories. The parameters of the chosen networks are presented in Table 1.

Experiments were simulated within the given network N(V, E) based on the vertex set V ¼
v1; v2; . . . ; vm and edge set E ¼ e1; e2; . . . ; en. Simulations were performed using the proposed

Susceptible–Infected model. Each node u 2 V has a relationship represented by an edge (u,

v)2E. At each step t+ 1 of the simulation, every node v 2 V can be infected by his neighbor

with a propagation probability PP(u, v) provided that the infecting neighbor was infected in

step t< t + 1.

In this study, we focused on investigating the impact of habituation on network coverage

and infection duration. For the purpose of the experiment, a test space was created, consisting

of the following parameters, R × N × PP × SP ×H × A × T with a seeding strategy based on sin-

gle-stage seeding. This provided us with 640 combinations, each of which was performed 10

times, which allowed us to analyze the influence of individual parameters on the course of the

infection process. Randomized probabilities were used for each simulation, which was drawn

at each attempt to infect a susceptible node on a given edge. Details of the parameters used are

given in Table 2.

Each simulation begins with a group of activated nodes F(s0) in a given graph G(V, E). In

each subsequent simulation step s, a set of nodes F(s − 1) activated at step s − 1 is generated

before the contagion process begins. For each node from the set u 2 F(s − 1), a list of suscepti-

ble neighbors is created Θ(v, s). For each node v 2 Θ(v, s), activation is attempted by node u.

Activation occurs when the randomly generated number on the edge between the nodes con-

cerned is lower than the given PP(u, v). Propagation probability is equal for all steps. If the acti-

vation attempt is successful, the newly infected node migrates to the set of nodes infected in

this step F(s) and will be able to participate in the infection process in the next step s + 1 as a

spreader.

Due to the integration of the model with the habituation effect, each node is also assigned a

responsiveness level R(v, s), which is used to calculate the node-specific propagation

Table 1. Main network characteristics for Networks N1–N4, including the number of nodes and edges, the mean degree (DG), network density (ND), global cluster-

ing coefficient (CC), mean eigenvector centrality (EV), and modularity (MD).

Networks Source Nodes Edges DG ND CC EV MD Reference

N1 University of California 899 7019 16.62 0.0174 0.07 0.14 0.22 [39]

N2 Political blogs 1224 16715 27.31 0.0223 0.23 0.1 0.43 [40]

N3 Hamsterster friendships 1858 12534 13.49 0.0073 0.09 0.05 0.45 [41]

N4 UoCalifornia messages 1899 13838 14.57 0.0077 0.06 0.08 0.26 [42]

https://doi.org/10.1371/journal.pone.0280266.t001

Table 2. Parameters used for diffusion in the simulations.

Symbol Parameter Variants Values

R Ranking Type 2 Random, Degree

N Network 4 N1, N2, N3, N4

PP Propagation probability 2 0.05, 0.1

SP Seed fraction 2 1%, 5%

H Habituation 2 Exists, Not exists

A α 2 1.05, 1.2

T τ 5 5, 10, 15, 20, 25

https://doi.org/10.1371/journal.pone.0280266.t002
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probability at a given simulation stage. Responsiveness decreases due to a failed contagion

attempt, which directly affects the probability of propagation according to our model. If R(v,

s)<1.0, then, for a given PPs, its new value for a given node is calculated according to the for-

mula PPs(u, v, s) = PP(u, v) * R(v, s).
The calculation of the responsiveness factor for a given node is performed after each con-

tact. At the beginning of each simulation step, nodes can be in one of two states: 1, active, or 0,

inactive. Active nodes may attempt to infect. Each contact in the network can result in one of

two possibilities: ineffective activation (unwanted messages) or activation. When a node is acti-

vated, the level of responsiveness does not change, and such a node already functions as a

spreader.

When an unsuccessful attempt is made, responsiveness is calculated according to Formula

(1):

y ¼ y0 �
S
a

1 � exp
a � Cntþ1

t

� �� �

ð1Þ

where y0 represents the initial habituation value. For non-contacted inactive nodes, it is 1.0;

for inactive contacted nodes, it is valid for each discreet time point t. S represents stimulus

exposition and in this experiment always takes the value of 1 because of the number of actions

in the current time step. α is responsible for the recovery rate. τ is a constant influencing habit-

uation process. t is valid for the time that has passed since responsiveness began to drop.

An increase in responsiveness in the SI model can occur when there is no interaction

between nodes. As we have mentioned, there are no interruptions in the SI model, so the fol-

lowing method was added for the universality of the algorithm and in terms of future research.

Growth can be calculated using Formula (2):

y ¼ y0 � ðy0 � y1Þexp
� a � Cnt� 1

t

� �

ð2Þ

where y0 represents the initial responsiveness value, equal to 1.0, y1 refers to the responsiveness

value reached during the decrease periods, and t, in this case, represents the time passed from

the beginning of the recovery process.

In both cases, time t does not represent simulation steps, but the number of contacts. In our

study, the reason for the decrease in responsiveness is each failed message delivery attempt,

not the time in the sense of a simulation step in which there is a variable number of attacks per

node.

4. Illustrative example

In the following section, we will present a simplified process and how it differs from the basic

SI model. The network slice shown consists of seven nodes connected by eight edges. Fig 3 is

divided into two parts: A, corresponding to the process without the effect of habituation, and

B, which assumes this effect. Both show five steps of the simulation. For both processes, the

assumed propagation probability threshold is 0.1. In turn, the edge weights are randomized for

a given edge at each successive contact. Each contact results in an attempt to pass the content

on. In the case of Process 3.A, contacts resulting in failed attempts do not reduce the propaga-

tion probability in any way. For 3.B, each node is assigned an initial responsiveness level of 1.

This level is reduced based on Formula (1) from the previous section. Under the figures with

each step, there are tables with the current responsiveness levels (R LVL) and information

about which relationship is affected (IN: infected node; SN: susceptible node). The probability

of propagation is always multiplied by the current level of responsiveness of a given node.
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Infection occurs when the drawn edge weight is less than or equal to the assumed propagation

probability. Selected parameters of the habituation process are τ = 5 and α = 1.05.

In Step 1, both Process A and B fail to infect any new node because the drawn edge weights

do not allow it. However, in a process with the habituation effect superimposed, each ineffec-

tive contact resulted in a reduction in the levels of responsiveness, which are shown in the

table under Fig 3.A.step1. This means that each attack in Step 2 will take place not with an

assumed threshold of 0.1 but with a threshold of 0.1 X 0.82 = 0.082.

Step 2 marks the first time that a decrease in responsiveness affects the process. The drawn

edge weight is equal to the assumed threshold, so in Fig 3.A.step2, the activation of Node 4 by

Node 1 occurs. In Example Fig 3.B.step2, contagion will not occur because the responsiveness

level will lower the assumed activation threshold to 0.082 as a result of a previous failed

attempt. Since no new nodes have been infected, we know that, in the next round, all nodes

will have their responsiveness reduced to 0.67, resulting in a PP of 0.067 for them instead of

the given 0.1.

For a process with no habituation effect, two more infections and one ineffective contact

occur in Step 3. The process with the superimposed effect succeeds in infecting the first node.

Despite the reduced PP, the drawn weight is smaller: 0.06 is smaller than 0.1 reduced to 0.067.

In Fig 3.B.step3, on the edge between Node 1 and 3, a situation like in Fig 3.B.step2 occurs

between Node 2 and 4. The assumed threshold without reduced responsiveness would allow

contagion on this edge as in Fig 3.A.step3 between the same nodes.

Fig 3. Toy example showing the steps of the simulation for processes with and without the habituation effect.

https://doi.org/10.1371/journal.pone.0280266.g003
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In Step 4, one infection occurs in both examples. In Fig 3.B.step4, infection occurs between

Node 4 and Node 6. This happens at the first contact; as a result of this, the level of responsive-

ness of Node 6 does not change. As we mentioned in an earlier chapter, once infected, the level

of responsiveness of such a node has no effect on whether it will pass the information on.

In Fig 3.A.step5, the last vulnerable node is infected. At the same stage, the process with the

habituation effect covered less than 60% of the network. In addition, Node 5 has its responsive-

ness level reduced to 0.19. Such a node can only be infected if the minimum activation thresh-

old at the next contact is method.

The graphic above shows how each successive contact generating another opportunity

affects the length of the process. This can be understood as the cost of the next attempt. It is

possible to try one more time to reach the customer, but this generates additional costs and

can cause the opposite reaction, i.e., discouragement or exhaustion with the amount of content

delivered.

5. Results

The main objective of this study was to integrate the effect of habituation within the model

of information spreading processes and analyze its effect on the performance of spreading

processes. The SI model was used as one of the basic models with many extensions and

based on the repeated contact between nodes. It was initially proposed for the spread of epi-

demics and has also been implemented for information diffusion. The differences in the pro-

cess with and without the habituation process were analyzed. Simulations were performed

on the agent-based proposed model with the integration of the habituation process. All pro-

cesses had the target of achieving a network coverage level of 80%. This decision was made

to standardize the results, as when testing the longest intervals, the processing time needed

for full coverage increased significantly, as will also be shown in the analysis below. The

experiment was based on different parameters such as ranking types, networks, propagation

probabilities, seed fraction characteristics for spreading models, and the habituation process

parameters τ and α. All results for the individual parameters can be found in the Tables 3–6.

In order to highlight the characteristics of the influence of the habituation effect on the

spreading process, we decided to divide the graphs into two sections: network coverage and

process duration. The network coverage section presents the results for each considered

parameter after 5, 10, and 15 simulation steps. Process duration presents the values for half

of the assumed threshold, in this case 40%, and after reaching the goal, i.e., infecting 80% of

the network.

Impact of the habituation effect on network coverage in

information-spreading processes

The average results for all simulation runs with all parameters for processes with and without

the habituation effect are presented in Fig 4.A1. It can be clearly seen that, at each simulation

run presented, the process with habituation performed relatively poorly. After five steps, the

difference in favor of the process without habituation was 19.17%. After 10 steps, it decreased

slightly and amounted to 18.76%. After 15 steps, the process without habituation reached the

intended 80%, and its advantage over the “chasing” process with the habituation effect was

equal to 14.2%. Parameters showed statistical significance. The Wilcoxon test showed p-values

less than 0.05 for both τ and α. Fig 4.A2 shows the drops in coverage for all processes with

habituation, sorted by the drop in coverage. It can be seen that the longer the simulation lasted,

the smaller the decreases were, which was due to the fact that some processes did not even

need seven steps to reach the target. The largest difference after five steps was 52.2%. After 10
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steps, we observed a value of 45.51%; after 15 steps, it was 39.4%. The smallest differences also

decreased over time, with 15.05%, 2.65%, and 0.28% after 5, 10, and 15 steps, respectively. Fig

4.A3 to 4.A5 shows all the runs sorted by the coverage of the processes without habituation.

Each graph represents the situation after 5, 10, and 15 steps.

Considering the individual networks used for the simulations (Fig 4.B1), it can be seen that,

when simulations without the effect of habituation performed better on a given network corre-

spondingly, processes with applied habituation also showed improved performance compared

Table 3. Coverage for spreading processes with and without habituation.

Parameter Value HAB NO HAB

5 steps p-value 10 steps p-value 15 steps p-value 5 steps 10 steps 15 steps

43.74% <2.2e-16 59.79% <2.2e-16 66.77% <2.2e-16 62.91% 78.55% 80.00%

NET N1 42.74% <2.2e-16 59.98% <2.2e-16 67.09% <2.2e-16 62.79% 79.81% 80.00%

N2 52.75% <2.2e-16 67.12% <2.2e-16 72.71% <2.2e-16 73.12% 80.00% 80.00%

N3 37.93% <2.2e-16 54.60% <2.2e-16 62.37% <2.2e-16 55.86% 76.04% 80.00%

N4 41.53% <2.2e-16 57.45% <2.2e-16 64.93% <2.2e-16 59.84% 77.02% 80.00%

ALPHA 1.05 42.21% <2.2e-16 57.41% <2.2e-16 64.56% <2.2e-16 62.91% 78.55% 80.00%

1.2 45.26% <2.2e-16 62.16% <2.2e-16 68.99% <2.2e-16 62.91% 78.55% 80.00%

PP 0.05 31.59% <2.2e-16 48.25% <2.2e-16 57.47% <2.2e-16 53.91% 75.67% 80.00%

0.1 55.89% <2.2e-16 71.32% <2.2e-16 76.08% <2.2e-16 71.90% 80.00% 80.00%

SP 0.01 41.41% <2.2e-16 59.59% <2.2e-16 67.06% <2.2e-16 60.25% 78.70% 80.00%

0.05 46.06% <2.2e-16 59.98% <2.2e-16 66.49% <2.2e-16 65.56% 78.39% 80.00%

TAU 5 31.36% <2.2e-16 45.60% <2.2e-16 54.35% <2.2e-16 62.91% 78.55% 80.00%

10 40.64% <2.2e-16 56.20% <2.2e-16 63.92% <2.2e-16 62.91% 78.55% 80.00%

15 59.92% <2.2e-16 62.31% <2.2e-16 69.19% <2.2e-16 62.91% 78.55% 80.00%

20 49.29% <2.2e-16 66.22% <2.2e-16 72.31% <2.2e-16 62.91% 78.55% 80.00%

25 51.47% <2.2e-16 68.61% <2.2e-16 74.10% <2.2e-16 62.91% 78.55% 80.00%

https://doi.org/10.1371/journal.pone.0280266.t003

Table 4. Duration for spreading processes with and without habituation.

Parameter Value HAB NO HAB

40% coverage p-value 80% coverage p-value 40% coverage 80% coverage

6.15 <2.2e-16 39.83 <2.2e-16 3.30 9.46

NET N1 6.33 <2.2e-16 33.14 <2.2e-16 3.51 8.5

N2 4.27 <2.2e-16 26.48 <2.2e-16 2.58 7.03

N3 7.52 <2.2e-16 53.33 <2.2e-16 3.71 11.60

N4 6.48 <2.2e-16 46.37 <2.2e-16 3.40 10.70

ALPHA 1.05 6.53 <2.2e-16 45.40 <2.2e-16 3.30 9.46

1.2 5.77 <2.2e-16 34.26 <2.2e-16 3.30 9.46

PP 0.05 8.51 <2.2e-16 58.14 <2.2e-16 3.84 11.91

0.1 3.79 <2.2e-16 21.52 <2.2e-16 2.76 7.01

SP 0.01 6.59 <2.2e-16 35.13 <2.2e-16 3.76 9.16

0.05 5.71 <2.2e-16 44.53 <2.2e-16 2.84 9.76

TAU 5 9.89 <2.2e-16 67.42 <2.2e-16 3.30 9.46

10 6.55 <2.2e-16 46.84 <2.2e-16 3.30 9.46

15 5.27 <2.2e-16 34.84 <2.2e-16 3.30 9.46

20 4.66 <2.2e-16 27.23 <2.2e-16 3.30 9.46

25 4.38 <2.2e-16 22.82 <2.2e-16 3.30 9.46

https://doi.org/10.1371/journal.pone.0280266.t004
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with the other runs for the other networks. Net2 obtained the best results for both types of pro-

cesses. It has the highest mean degree (DG = 27.31), clustering coefficient (CC = 0.23) and a

network density of two to three times that of the other networks (ND = 0.0223—see Table 1).

The worst effects were observed for Net3. Comparing these extreme cases, we obtained 52.27%

for Net2 and 37.93% for Net3 after 5 steps, and these values were 67.12% and 54.60% after 10

steps and were 72,71% and 62,37% after 15 step, respectively. Fig 4.B2 shows the percentage

drops in coverage at the selected steps. For Network 2 and 3, the difference in coverage in

favor of Network 2 was 4.24% after 5 steps, 12.1% after 10 steps, and 12.93% after 15 steps.

Thus, looking at the specifics of the network, it can be concluded that the network density

became more important over time in terms of reducing the effect of habituation. When the

average response rate was already strongly reduced for the whole network, the number of

Table 5. Coverage decrease for spreading processes with the habituation effect.

Parameter Value 5 steps p-value 10 steps p-value 15 steps p-value

NET N1 31.93% <2.2e-16 24.85% <2.2e-16 16.14% <2.2e-16

N2 27.86% <2.2e-16 16.10% <2.2e-16 9.11% <2.2e-16

N3 32.10% <2.2e-16 28.20% <2.2e-16 22.04% <2.2e-16

N4 30.60% <2.2e-16 25.41% <2.2e-16 18.84% <2.2e-16

ALPHA 1.05 32.90% <2.2e-16 26.91% <2.2e-16 19.30% <2.2e-16

1.2 28.06% <2.2e-16 20.87% <2.2e-16 13.76% <2.2e-16

PP 0.05 41.40% <2.2e-16 36.24% <2.2e-16 28.16% <2.2e-16

0.1 22.27% <2.2e-16 10.85% <2.2e-16 4.90% <2.2e-16

SP 0.01 31.27% <2.2e-16 24.28% <2.2e-16 16.17% <2.2e-16

0.05 29.74% <2.2e-16 23.49% <2.2e-16 16.89% <2.2e-16

TAU 5 50.15% <2.2e-16 41.95% <2.2e-16 32.06% <2.2e-16

10 35.40% <2.2e-16 28.45% <2.2e-16 20.10% <2.2e-16

15 27.01% <2.2e-16 20.67% <2.2e-16 13.51% <2.2e-16

20 21.65% <2.2e-16 15.70% <2.2e-16 9.61% <2.2e-16

25 18.18% <2.2e-16 12.65% <2.2e-16 7.38% <2.2e-16

https://doi.org/10.1371/journal.pone.0280266.t005

Table 6. Duration increase for spreading processes with the habituation effect.

Parameter Value 40% coverage p-value 80% coverage p-value

NET N1 80.34% <2.2e-16 289.88% <2.2e-16

N2 65.50% <2.2e-16 276.67% <2.2e-16

N3 102.70% <2.2e-16 359.74% <2.2e-16

N4 90.59% <2.2e-16 333.36% <2.2e-16

ALPHA 1.05 97.88% <2.2e-16 379.92% <2.2e-16

1.2 74.85% <2.2e-16 262.16% <2.2e-16

PP 0.05 121.61% <2.2e-16 388.16% <2.2e-16

0.1 37.32% <2.2e-16 206.99% <2.2e-16

SP 0.01 75.27% <2.2e-16 283.52% <2.2e-16

0.05 101.06% <2.2e-16 356.25% <2.2e-16

TAU 5 199.70% <2.2e-16 612.68% <2.2e-16

10 98.48% <2.2e-16 395.14% <2.2e-16

15 59.70% <2.2e-16 268.29% <2.2e-16

20 41.21% <2.2e-16 197.84% <2.2e-16

25 32.73% <2.2e-16 141.23% <2.2e-16

https://doi.org/10.1371/journal.pone.0280266.t006
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Fig 4. (A1) Coverage for spreading processes with and without habituation. (A2) Coverage decrease in processes with the habituation effect, compared

to processes without habituation, sorted by the decrease in coverage. (A3- -A5) Distances between coverage in simulations with and without the

habituation effect, with results sorted by coverage without habituation and assigned corresponding results from processes with the habituation effect.

(B1) Coverage for each network for spreading processes with and without habituation. (B2) Decrease in coverage for each network in relation to a

process without habituation. (C1) Coverage for each alpha value for spreading processes with habituation compared to a process without habituation.

(C2) Decrease in coverage for each alpha in relation to a process without habituation. (D1) Coverage for propagation probabilities for spreading

processes with and without habituation. (D2) Decrease in coverage for each PP value in relation to a process without habituation. (E1) Coverage for

each seeding percentage for spreading processes with and without habituation. (E2) Decrease in coverage for each SP in relation to a process without

habituation. (F1) Coverage for each tau value for spreading processes with habituation in comparison with processes without habituation. (F2)

Decrease in coverage for each tau in relation to a process without habituation.

https://doi.org/10.1371/journal.pone.0280266.g004
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connections became more important. The model used, makes the number of possible. contacts

the most important element affecting the speed of coverage. The impact of network heteroge-

neity is further shown in the Fig 5. Parameters such as modularity, eigenvector do not show

significant interference with the processes within set of analysed networks. Fig 5.A and 5.B

shows all runs for selected networks with and without the imposed habituation effect. Fig 5.C1

and 5.D1 presents the “worst” and the “best” set of habituation parameters, respectively. Fig 5.

Fig 5. (A) Coverage for each network for all spreading processes without habituation. (B) Coverage for each network for all spreading processes with

habituation. (C1) Coverage for each network for spreading processes with the “worst” set of habituation parameters. (C2) Decrease in coverage for each

network in relation to a process without habituation with the “worst” habituation parameters. (D1) Coverage for each network for spreading processes

with the “best” set of habituation parameters.(D2) Decrease in coverage for each network in relation to a process without habituation with the “best”

habituation parameters.

https://doi.org/10.1371/journal.pone.0280266.g005
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C2 and 5.D2, on the other hand, show declines in the performance of these processes relative

to simulations without the habituation effect applied.

Fig 4.C1 illustrates the comparison between simulations without habituation and simula-

tions in terms of the α parameter. This parameter affects the way the response curve flattens

out. The higher the value, the lower the decreases are and the higher the increases are during

the recovery of a node. This results in minimally improved network coverage results for α =

1.2. Fig 4.C2 shows the decreases in network coverage with respect to the process without

habituation with respect to the analyzed α parameters. The difference in subsequent simula-

tion steps were 4.84%, 6.04%, and 5.54% in favor of the parameter α = 1.2.

In Fig 4.D1, we compare the individual propagation probabilities with and without the

implemented habituation effect. In this case, there was a clear difference in favor of PP = 0.1. A

higher propagation probability resulted in faster network coverage. Fig 4.D2, on the other

hand, shows that, comparing the processes with the habituation effect, a higher PP also

resulted in smaller drops compared to the processes without the effect of habituation; thus,

after 5, 10, and 15 simulation steps, the difference in favor of PP = 0.1 was, respectively,

19.13%, 25.39%, and 23.26%. At the same time, in the last step in both simulations without

habituation, the processes had already reached the assumed 80% coverage, so they did not

increase their “advantage”.

The impact of the number of initial nodes initiating the process is shown in Fig 4.E1. It is

interesting to note that processes with a higher number of seeds perform worse in terms of net-

work coverage over time. Although the process with SP = 0.05 covered 4.65% more of the net-

work after five simulation steps, it was only 0.39% more after 10 steps. After 15 steps, the

process with the smaller SP (equal to 0.01) achieved a network coverage of 67.06%, whereas

the process with the larger SP covered 66.49%, losing 0.57 percentage points. It can be con-

cluded from this that the initial higher number of seeds resulted in an increased number of

contacts, as well as the unsuccessful ones, which results in a faster decrease in the level of

responsiveness over the whole network, ultimately causing a decrease in the spreading speed.

Fig 4.E2, in turn, shows that processes with more grains over time also lose their advantage in

terms of a decrease in coverage compared to processes without habituation with the same SP.

After five steps, the process with a larger SP showed a smaller decrease of 29.74%, whereas the

processes with a smaller SP exhibited a decrease of 31.27%. After 10 steps, they reached 23.49%

and 24.28%, respectively. After 15 steps, the situation reversed and the advantage was reached

by processes with SP = 0.01, losing 16.7%, while processes with SP = 0.05 lost 16.89% to pro-

cesses without the habituation effect.

The second habituation parameter, τ, is shown in Fig 4.F1. It is a time constant, and the

smaller it is, the more rapidly habituation occurs. This is confirmed in the graphs, as τ = 5

achieved the worst result at each stage of the simulation (31.36%, 45.60%, and 54.35%),

whereas the largest considered τ = 25 covered the network the best (51.47%, 68.61%, and

74.10%). When we look at the declines in coverage shown in Fig 4.F2, we can also notice that,

as the τ parameter increases, the decline in coverage decreases faster over time relative to pro-

cesses without habituation with lower values of this parameter.

Impact of the habituation effect on duration in information-

spreading processes

Fig 6.A1 and 6.A2 show all simulation runs divided into processes with and without the imple-

mented habituation effect, sorted in ascending order by length. In both examples, the tendency

for the efficiency of the process to decrease (based on its duration) is even more pronounced.

A comparison of the averages of all runs can be found in Fig 6.A3. To achieve half of the
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Fig 6. (A1-A2) Distances between the durations of simulations with and without the habituation effect, with results sorted by duration without

habituation and assigned corresponding results from processes with habituation. (A3) Duration for spreading processes with and without habituation.

(A4) Duration increases in processes with the habituation effect, compared to processes without habituation, sorted by coverage increase. (B1)

Durations for each network for spreading processes with and without habituation. (B2) Increases in duration for each network in relation to a process

without habituation. (C1) Durations for each alpha value for spreading processes with habituation compared to a process without habituation. (C2)

Increases in duration for each alpha value in relation to a process without habituation. (D1) Durations for propagation probabilities for spreading

processes with and without habituation. (D2) Increases in duration for each PP in relation to a process without habituation. (E1) Durations for each

seeding percentage for spreading processes with and without habituation. (E2) Increase in duration for each SP in relation to a process without

habituation. (F1) Durations for each tau value for spreading processes with habituation in comparison with processes without habituation. (F2)

Increases in duration for each tau value in relation to a process without habituation.

https://doi.org/10.1371/journal.pone.0280266.g006
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assumed coverage (40%), processes without habituation required 3.30 simulation steps on

average, whereas processes with habituation required almost half as much time (86% more),

namely 6.15 steps. Accordingly, for the 80% threshold, the results were as follows: 9.46 steps to

39.83. To achieve the same network coverage, the process with habituation required 321%

more time. This was confirmed by the U Mann–Whitney test, which showed the significance

(p< 0,05) of the impact of the habituation effect on the duration of the process. For the

assumed 40% coverage, the habituation parameters show statistical significance at the level of

0.0466, whereas for the level of 80%, the parameters also showed statistical significance, which

was higher, at 0.0098. This confirms the increasing influence of the habituation process on the

duration of coverage of the assumed thresholds. Fig 6.A4 compares the magnitude of the dura-

tion increases for the earlier graphs (A1, A2). In the case of a 40% network coverage, the

increases are in the range of 100%–350%; given an 80% coverage, we obtain a range of dura-

tion increases of 250%–650%.

If we look at the division in terms of adopted networks (Fig 6.B1), we can see a division into

two groups: Net1 with Net2, and Net3 with Net4. The first group has a noticeably higher net-

work density (ND), and degree (DG) values. The second group, on the other hand, is charac-

terized by a significantly higher number of nodes. In the SI model in which the number of

contacts is crucial, with low density and the habituation effect implemented, we observe a

noticeable decrease in the speed of the processes taking place. The time increases presented in

Fig 6.B2 show that, if the processes performed relatively well, they also performed well in rela-

tion to “their” collected processes without the habituation effect.

For the comparison of process duration (Fig 6.C1) in terms of parameter α, again the higher

parameter (α = 1.2) performed better for both a 40% coverage (5.77–6.53 steps) and an 80%

coverage, with the difference increased even more (34.26–45.40 steps). Both parameters

obtained significantly worse results than the processes without habituation, as can be clearly

seen in Fig 6.C2. For a 40% network coverage, the duration increased for α = 1.2 by 74.85%

and for α = 1.05 by 97.88%, whereas for an 80% coverage, the duration increased for these

parameters by 262.12% and 379.92%, respectively.

Propagation probability (Fig 6.D1) was shown to be a much stronger factor influencing the

duration of processes with habituation compared to without habituation. For an 80% coverage,

processes without habituation took 69% longer with PP = 0.05 than with PP = 0.1 (11.91–7.01

steps). For the same coverage value, processes with habituation for a lower PP lasted 170% lon-

ger (58.14–21.52 steps). This is further evidence that, as time passes, the habituation process

has an increasing effect on decreasing spreading efficiency, directly affecting the overall pro-

cess’s duration.

The fewer nodes infected in a given step, the longer the entire process takes (Fig 6.D2). To

achieve the assumed network contagion threshold, processes with habituation when PP = 0.05

take 388.16% longer than processes without the habituation effect; when PP = 0.1, the increase

is 206.99%. A trend can be noted that a doubled PP causes a two-fold decrease; i.e., it is

inversely proportional. Reaching a 40% network coverage where PP = 0.1 for processes with

habituation takes only 37.32% longer than processes without habituation; when PP = 0.05, this

percentage is 121.61%. Reaching a 40% network coverage where PP = 0.1 for processes with

habituation takes only 37.32% longer than for processes without habituation; when PP = 0.05,

this percentage is, again, 121.61% for processes with habituation.

The effect of the number of nodes that initiate the entire process is shown in Fig 6.E1. For

coverage up to the 40% level, habituation-aware simulations with SP = 0.05 reach the assumed

threshold faster than processes with a lower initial seed count, SP = 0.01. On the other hand,

reaching the 80% threshold for the same processes takes longer with a higher SP = 0.05. This

could imply that the initial high number of infected nodes results in a higher number of
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ineffective attacks, which, after the early rapid coverage of the network, results in a concomi-

tant, faster decrease in the average responsiveness of the entire network, which slows down the

process, making it more difficult for subsequent infections to occur at the same rate. Fig 6.E2

shows the increase in the duration of processes with the habituation effect relative to processes

without it. Processes with the higher initial number of infected nodes lasted longer when they

reached both a 40% and 80% network coverage. As in the previous graph, we can observe that

the processes with habituation and a higher SP perform worse at the initial stage due to a

decrease in responsiveness compared with processes without habituation and thus an SP value.

Again, the decrease in average network responsiveness at earlier stages of the process slows

down the spreading from the very beginning.

The effects of individual values of τ on the increase in the duration of the network coverage

process are shown in Fig 6.F1. As assumed, increasing the value of τ promotes process acceler-

ation. Processes with a τ value of 5 take about three times as long to reach the assumed thresh-

olds than processes with a τ value of 25. Fig 6.F2 shows the increases in the duration of

processes with habituation relative to processes without it. Again, it can be observed that the

more rapidly the habituation process is, the more quickly the responsiveness of the network

decreases, which is a simple factor that leads to fewer infected nodes in subsequent steps. This

means more failed infection attempts, which in turn again causes the responsiveness to drop,

and so on. For a τ value of 5 for a 40% network coverage, the process duration increases by

200%; for a threshold of 80%, the time increases by over 600%. As an extreme comparison, a τ
of 25 reaches the 80% threshold with an increase of less than 200%.

6. Conclusions

Most earlier works related to repeated contacts within social networks and information diffu-

sion processes have assumed an increased potential response with each repetition. From that

perspective, each contact may increase a node’s interest in a discussed product or idea. As a

result, the transmission rate increases.

From another perspective, each incoming message can be treated as a stimulus, and accord-

ing to research related to habituation, the response to repeated stimuli decreases. However, a

response also has the potential to recover if stimuli are not encountered over a certain time-

frame. In this study, we evaluated the impact of habituation on spreading processes under an

SI model with assumed repeated contact during the process.

Our experimental study revealed the existence of a relationship between process dynamics

and selected habituation parameters. Many significant decreases in performance and the cov-

erage of simulated processes were observed. We believe that failing to account for the habitua-

tion effect can result in significant performance degradations in real systems, despite the

selection of appropriate seeds and individual process parameters to maximize impact. This

maximization may turn out to be “lethal” for the intended effects of the campaign, as content

overload will have the opposite effect.

One of the ways to avoid such situations may be the selection of an appropriate “dosage” of

content so as not to lead to a decrease in responsiveness, which this study tries to prove by

looking for causality in the habituation effect. The obtained results have several implications

for practice and real campaigns. Spreading processes in social networks allows us to analyze

the entire spectrum of events that affect the functioning of the world, including marketing,

social and political campaigns, viral rumor marketing, and the entire flow of information, end-

ing with the widely discussed current topic of the ongoing COVID-19 pandemic. The means

of communication can generate different stimuli to change the user’s behavior or opinion.

Maximizing contact or influence and seed choice were considered when analyzing such an
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impact. Although increasing the number of contacts may be effective for many scenarios,

repeated unwanted messages, instead of the intended maximization, may have the opposite

effect.

An interesting example may be the ongoing large-scale vaccination campaigns all around

the world. After very rapid initial growth, vaccination rates quickly began to decrease, many

countries have not yet reached their intended thresholds. At the same time, the number of peo-

ple who were skeptical about vaccination increased. Information that annoys people the first

time around, when repeated persistently, will increase the level of aversion in the recipient and

increase the likelihood that they will discourage additional people in their environment. At the

same time, a “latent” disinformation campaign is underway in a form similar to whisper mar-

keting, in which information is infrequent but highly emotionally tinged.

Several directions of future work can be taken. First of all, the need for methods allowing us

to decrease the negative impact of habituation of information diffusion performance is

strongly suggested. Appropriate timing and campaign intensities can be adjusted using

computational models. Another exciting topic is related to competing processes and the

impact of habituation on their interactions.
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27. Piedrahita P, Borge-Holthoefer J, Moreno Y, González-Bailón S. The contagion effects of repeated acti-

vation in social networks. Social networks. 2018; 54:326–335. https://doi.org/10.1016/j.socnet.2017.11.

001

PLOS ONE Modeling the impact of the habituation effect on information spreading processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0280266 April 12, 2023 19 / 20

https://doi.org/10.1362/147539217X14909733609398
https://doi.org/10.1362/147539217X14909733609398
https://doi.org/10.1108/JRIM-12-2019-0212
https://doi.org/10.1108/JRIM-12-2019-0212
https://doi.org/10.1504/IJMC.2018.089757
https://doi.org/10.1016/j.nlm.2008.07.011
https://doi.org/10.1016/j.nlm.2008.07.011
http://www.ncbi.nlm.nih.gov/pubmed/18703156
https://doi.org/10.1037/h0022681
http://www.ncbi.nlm.nih.gov/pubmed/5324565
https://doi.org/10.1016/j.nlm.2008.09.012
http://www.ncbi.nlm.nih.gov/pubmed/18854219
https://doi.org/10.1016/j.anbehav.2016.05.012
https://doi.org/10.1038/215707a0
https://doi.org/10.1038/215707a0
http://www.ncbi.nlm.nih.gov/pubmed/6059539
https://doi.org/10.1038/261146a0
https://doi.org/10.1038/261146a0
http://www.ncbi.nlm.nih.gov/pubmed/179015
https://doi.org/10.46867/C4F01X
https://doi.org/10.1007/BF00198760
http://www.ncbi.nlm.nih.gov/pubmed/1472577
https://doi.org/10.1016/j.nlm.2008.05.014
http://www.ncbi.nlm.nih.gov/pubmed/18602487
https://doi.org/10.1287/opre.2019.1918
https://doi.org/10.1287/opre.2019.1918
https://doi.org/10.1371/journal.pone.0237278
http://www.ncbi.nlm.nih.gov/pubmed/34061853
https://doi.org/10.1371/journal.pone.0140556
http://www.ncbi.nlm.nih.gov/pubmed/26465749
https://doi.org/10.1016/j.procs.2014.05.038
https://doi.org/10.1016/j.procs.2014.05.038
https://doi.org/10.1007/s11432-018-9609-7
https://doi.org/10.1016/j.socnet.2017.11.001
https://doi.org/10.1016/j.socnet.2017.11.001
https://doi.org/10.1371/journal.pone.0280266


28. Read JM, Eames KT, Edmunds WJ. Dynamic social networks and the implications for the spread of

infectious disease. Journal of The Royal Society Interface. 2008; 5(26):1001–1007. https://doi.org/10.

1098/rsif.2008.0013 PMID: 18319209

29. Smieszek T, Fiebig L, Scholz RW. Models of epidemics: when contact repetition and clustering should

be included. Theoretical biology and medical modelling. 2009; 6(1):1–15. https://doi.org/10.1186/1742-

4682-6-11

30. Diekmann O, De Jong M, Metz JAJ. A deterministic epidemic model taking account of repeated con-

tacts between the same individuals. Journal of Applied Probability. 1998; 35(2):448–462. https://doi.

org/10.1239/jap/1032192860

31. Dietz K, Hadeler K. Epidemiological models for sexually transmitted diseases. Journal of mathematical

biology. 1988; 26(1):1–25. https://doi.org/10.1007/BF00280169 PMID: 3351391

32. Leskovec J, Adamic LA, Huberman BA. The dynamics of viral marketing. ACM Transactions on the

Web (TWEB). 2007; 1(1):5. https://doi.org/10.1145/1232722.1232727

33. Michalski R, Jankowski J, Kazienko P. Negative effects of incentivised viral campaigns for activity in

social networks. In: 2012 Second International Conference on Cloud and Green Computing. IEEE;

2012. p. 391–398.

34. Bonell C, Michie S, Reicher S, West R, Bear L, Yardley L, et al. Harnessing behavioural science in pub-

lic health campaigns to maintain ‘social distancing’in response to the COVID-19 pandemic: key princi-

ples. J Epidemiol Community Health. 2020; 74(8):617–619. https://doi.org/10.1136/jech-2020-214290

PMID: 32385125

35. Jankowski J. Habituation effect in social networks as a potential factor silently crushing influence maxi-

misation efforts. Scientific reports. 2021; 11(1):1–12. https://doi.org/10.1038/s41598-021-98493-9

PMID: 34561501
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